Tuesday, 11 March 2008

Radical contradiction

Technically speaking,

We have blown up the "root of contradiction" with an _atomic_ bomb.

To the casual philosophers we are, I will show the links below.

To the professional programmer: a crack is not a hack, but a hack is a crack.

Keep up the go(o)d work.


Julio Di Egidio
Re: Question about proof by contradiction
Posted: Mar 10, 2008 11:12 AM


BTW, here is an extract from a letter from Wittgenstein to Russel, 1921, which I think sheds some light (I'm

afraid I'll have to traslate, I've got it in Italian):

"I believe our problems track down to _atomic_ propositions. You'll see it if you try to precisely explain

how the Copula is such propositions has meaning. I cannot explain it and I believe that, once an exact answer

is given to this question, the problem of <> and of the apparent variable will be _much_ nearer its

solution, if not solved. Now I think above <> (the good old Socrates!)."

The good old Ludwig!!

Explaining that meaning, by means of the empty set "we" are, is indeed what I have shown (again, until dis-




Re: Question about proof by contradiction
Posted: Mar 10, 2008 5:46 PM

> >> Proof by contradiction can be formalized as
> >> (P -> (A and not(A))) -> not(P).
> The proof in question, in fact, does not even use proof by
> contradiction. It has the form
> (P -> not(P)) -> not(P).
> This is not a proof by contradiction.


Does anything interesting happen if we transform them somewhat?

(P -> (A and not(A))) -> not(P)
(P -> false) -> not(P).
(not(P) or false) -> not(P)
not(P) -> not(P)

Well, I seem to have destroyed the formula's essential nature
by these manipulations. How did THAT happen? Apparently
truth-value-preserving transformations don't preserve some things
that aren't truth values.



No comments :

Post a Comment